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Abstract
Wepresent a detailed security analysis of a d-dimensional quantumkey distribution protocol based on
two and threemutually unbiased bases (MUBs) both in an asymptotic andfinite-key-length scenario.
Thefinite secret key rates (in bits per detected photon) are calculated as a function of the length of the
sifted key by (i) generalizing the uncertainly relation-based insight fromBB84 to any d-level 2-MUB
QKDprotocol and (ii) by adopting recent advances in the second-order asymptotics forfinite block
length quantum coding (for both d-level 2- and 3-MUBQKDprotocols). Since the finite and
asymptotic secret key rates increase with d and the number ofMUBs (together with the tolerable
threshold) suchQKD schemes could in principle offer an important advantage over BB84.Wediscuss
the possibility of an experimental realization of the 3-MUBQKDprotocol with the orbital angular
momentumdegrees of freedomof photons.

1. Introduction

It has beenmore than 30 years since the proposal of the first quantumkey distribution (QKD)protocol—BB84
[1]. The ultimate goal of aQKDprotocol is to establish a secure key between two parties for a further
cryptographic use; in this context, quantummechanics is a powerful ally of the legitimate parties. Therefore, it is
advantageous to generate the key by distributing andmeasuring quantum states. Contrary to communication
with classical signals, for quantum states there exists a fundamental trade-off between howmuch information a
classical or quantum adversary can get and howmuch the quantum system is disturbed. For example, themost
straightforward strategy of simply copying a quantum state does notwork [2, 3]. A significant amount of effort
has been invested in proving the security of BB84 and subsequentQKDprotocols (startingwith its proper
definition [4, 5]) and experimental realization [6].

Most of themodernQKD schemes rely on two-level quantum systems (qubits) as quantum information
carriers. This is especially easy to achieve using the photon polarization degree of freedom. The theoretical
background as well as the experimental techniques aremature. However, quantum d-level states (qudits) have
attractedmuch attention recently because they naturally offer higher quantum information transmission rates
and togetherwith continuous variables are promising candidates for next generation quantum information
processing. In this approach, the information is encoded onto d distinct orthogonal states, for which in principle
there is no upper limit ond. In the context ofQKD, the d-level protocols not only offer a great potential to
increase the transmitted key rate but they are also known to bemore resilient to errors [7]. Experimentally, high-
dimensional quantum states have been realized as discrete time-bins [8], positions [9] or angularmomenta [10]
in lab-scale proof-of-principle tests. They have also been successfully studied under real world environmental
conditionswhere air turbulence or inter-modal coupling infibers have to be taken into account [11, 12].

The experimental efforts for realization ofmultidimensional QKDhas primarily relied on employing two
mutually unbiased bases (MUBs). However, it is known that using only twoMUBs for d=2 does not realize the
full potential of a qubit-basedQKD. Instead, by using threeMUBswe are rewarded by an increase in the
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maximum tolerable error rate in aQKDprotocol known as the six-state protocol [13]. Considering this
observation, it is expected that usingmore than twoMUBswould provide enhancement in the security of the d-
dimensionalQKDprotocols. It is well known that for d a prime number or the power of a prime, themaximum
number ofMUBs in a d-dimensionalHilbert space is +d 1 [14, 15]. For the non-prime dimensions, the
number ofMUBs is amajor open problem.However, it is perhaps less well known that there always exists three
MUBs for any d [16].Motivated by this fact, we present a comprehensive security analysis for d-level QKDwith
two and threeMUBs.Ourmain contribution in this paper is the calculation of the secret key rate upper bounds
for discrete d-dimensional QKDprotocols using two and threeMUBs.We exemplify the key rate calculations on
d=2 to 7 but our approach can be immediately applied for any d. The secret key rates are calculated in both the
asymptotic and finite key length scenario. In the asymptotic case, the 2-MUB rates reproduce the previously
known results [6, 7, 17–25] but to our best knowledge the analytical results we obtain for 3-MUB rates and for
any d are novel and the corresponding adversarial channels have not been studied before (only the d= 2 case
reduces to thewell studied six-state protocol [13]). Themain reason to reproduce the already known results for
the 2-MUBQKDprotocol is the calculationmethod thatmay not be familiar to the practitioners ofQKD. It can
be summarized as ‘ab initio’ since our starting point is the private classical capacity and the quantum capacity of a
quantum channel [4] andwe systematically derive thewell-known expressions for the secret key rate. Themain
result of the asymptotic part of our analysis is the secret key rate calculation for the 3-MUBprotocol and the
derivation of the tolerable threshold for the error rate.We found that the threshold quite substantially increases
accompanied by the increase of the secret key rate5 as envisaged by the comparison of BB84 and the six-state
protocol. Our results justify the overlapping numerical results presented in [26].

The second part of our analysis is the study ofQKD in the non-asymptotic regime of afinite number of
exchanged signals.We follow two different routes leading to excellent (achievable [27]) upper bounds on the
secret key rates even for a relatively lownumber of signals. Thefirst approach is the generalization of the
uncertainty relation-based approach pioneered in [28] for twoMUBs and d=2.We generalize the key step
spelled out in [29] for any d and using the large deviation estimate for the number of errors in the non-sacrificed
part of the sifted keywe derived the corresponding secret key rates. The intermediate step includes a numerical
optimization over the ratio of dits in the secret key rates that are sacrificed for the parameter estimation
purposes. As the number of sifted bits asymptotically increases the portion of sacrificed bits tends to zero [30]
and the secret key rates approach the asymptotic ones derived previously. For another approach to the non-
asymptotic regime see [31, 32].

The uncertainty-relation-basedmethod is, however, not known to be applicable to the 3-MUBQKD
protocol [28].More precisely, it can be enforced even for threeMUBs but our attempts lead to awfully
suboptimal rates. Hencewe adopt a different strategy. Using the recent advances in the second-order
asymptotics for the quantum coding rates [33]weuse the expansion of the relevant entropic quantity (the
smoothmin-entropy) in terms of the conditional entropy variance [33, 34] and expand the decoupling exponent
of what is essentially a one-shot decoupling lemma [28]. The resulting rates are calculated both in the 2- and
3-MUBQKD scenario. In the latter, the resulting secret key rates are better for any d compared to the basic
estimatefirst brought by Renner in [23] that is used as a template in almost allfinite key studies. Since the 3-MUB
QKDprotocol for any d seems to be systematically studied for thefirst time here, it therefore establishes the best
known secret key rates. The second-order asymptotic expansion also beats Renner’s rates for the 2-MUBQKD
protocol (for any d) but it is not as good as the uncertainty-relation-based estimates. This is the expected kind of
behavior.

The remainder of the paper is structured as follows. In section 2we introduce theminimal background
material and notation for our approach to calculate the asymptotic secret key rates and collect several
rudimentary facts about the Pauli group for qudits andmutually unbiased basis.We also recall the Choi-
Jamiołkowski state-map correspondence. The asymptotic rates for 2- and 3-MUBQKDprotocol are calculated
in section 3. In section 4we introduce the necessary entropic quantities that come out in the expressions for
finite key length secret key rates and derive the previously discussed non-asymptotic secret key rates. In section 5
we describe one possible laboratory implementation of our results by considering photonicOAMbasedQKD
schemes, which have become a promising candidate for real-life high-dimensional QKD applications.We show
the spatialmodes thatwould be required for threeMUBs and describe possible next steps and open challenges.
We, however, do not analyze the security of the studiedQKDprotocols by considering all realistic parameters
such a platformoffers. This would include taking into account the efficiency of photon sources and detectors
togetherwith the suboptimality of certain classical information algorithms used in the postprocessing step. The

5
The secret key rate units are bits per channel where the channel is understood as a completely positivemapwhose exact formwill be

derived. Therefore our notion of a channel differs from its typical use in quantumoptics experiments. A quantum channel is said to be
realized in theQKD context whenever the photon is detected and used in the process of secret key extraction (not discarded). Knowing the
number of realizations of the channel per second gives us the total number of secret bits per a unit of time, sometimes perhaps confusingly
also called a rate.
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experimental inefficiencies do not affect the secret key rate (measured by bits per channel) but rather the speed of
howmany secret bits one is able to collect per given time period.

2. Security of asymptoticQKDandpreliminaries

Themodern definition of security for a quantumkey distribution protocol requires the final state ABE to satisfy

å t- ñá Ä ñá Ä
Î∣ ∣

∣ ∣ ∣ ∣ ( ) 
K

k k k k
1

. 1ABE
k K

A B E

1

The indices A B, stand for the legitimate sender and receiver andE is an adversary (Eve). The condition says that
after the protocols ends, the legitimate parties share classical correlations (in this case a classical key ñá{∣ ∣}k k k),
where the knowledge of Eve can bemade arbitrarily small—the quantum system in her possession is decoupled

from the legitimate participants. The expression = †M MMTr1
df  denotes the trace norm. This approachwas

first rigorously introduced in a great generality in [4] and in the context ofQKDalso in [5]. Themarginal state B

can be seen as an output of a noisy quantum channel  between a sender and a receiver. They do not know
whether the noisy evolution is caused by decoherence of any kind or by an eavesdropper andmainly theymust
not care. As long as they know the channel and are able to use it asymptotically (sending a large number of
quantum signals) one can often easily determinewhether a secret key can be established.Here comes the idea of
asymptoticQKD:with an ever increasing number of channel uses the parameter on the rhs of equation (1) is
required to become arbitrarily small. For some channels this condition cannot ever be satisfied and in that case
the asymptoticQKD is impossible. The normalized rate at which establishing classical correlation over a noisy
quantum channel is in principle possible is called the private classical capacity of  . Note that a secret key is a
formof classical correlations [4]. If the private capacity is zero, equation (1) cannot be satisfied in the sense that
Eve cannot be arbitrarily well decoupled from the state shared by the sender (A) to a receiver (B). The private
classical capacity is given by

=
¥

Ä( ) ( ) ( )  


P
n

Plim
1

sup , , 2
n

ndf

XAn

where

= -s s( ) ( ) ( ) ( ) P I X B I X E, ; ; 3
df

is the private information. The state s s= å ñá Ä∣ ∣p x xXBE x x x BE, is given by the action of a channel isometry

W A BE:  on a classical-quantum input state = å ñá Ä∣ ∣ p x xXA x x x A, andX denotes a classical random
variable with a probability distribution P ( º =( )p X xPrx ). The quantity ( )I A B; is called the quantummutual
information defined as

= + -s s s s( ) ( ) ( ) ( ) ( )I A B H A H B H AB; , 4

where s s= -s( ) [ ]H A Tr logA A
df

is the vonNeumann entropy6 of a (possiblymultipartite) state sAB Z... . The
private classical capacity in (2) is an unconstrained optimization problemwhose tractable solution for a general
channel  is not known at present and even the calculation of the one-shot private capacity (n = 1)

=( ) ( ) ( )( )   


P Psup , 51 df

XA

is not straightforward since A admits amixed state decomposition = å pA x x x A, .
Another fundamental quantity, seemingly unrelated toQKD, is called the quantum channel capacity [4]

=
¥

Ä( ) ( ) ( )  


Q
n

Qlim
1

sup , , 6
n

ndf

An

where

= -J J( ) ( ) ( ) ( ) Q H B H E, 7
df

is the coherent information. The isometry now acts on A that (crucially) can be limited to a convex sumof rank-
one states wx A, as w w Jå ñá∣ ∣W p: x x x x A BE . The quantum capacity follows from a stronger condition than
equation (1)—that themain goal is to successfully transmit a quantum state from a sender to a receiver who
happens to be decoupled from the environment E (completely controlled by an adversary). Quantumchannel
capacity(6) is also intractable for a general channel  but the one-shot quantity (also called the optimized
coherent information)

6
Log is the logarithmbase two and ln denotes the natural logarithm throughout the paper.
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=( ) ( ) ( )( )   


Q Qsup , 81 df

A

is fairly easy to evaluate (often not analytically but the numerics will do the job).
The decouplingmechanism is naturally useful for secret key generation. This is because the quantum

capacity can crucially be interpreted as the one-way entanglement distillation rate which itself is a lower bound
on the one-way secret key rate [4]. Once the parties sharemaximally entangled states, they can be used to teleport
any type of information, in particular a secret key, at the same rate the pairs were distilled. Hence the quantum
capacity is a channel secret key rate lower bound. Formally, it can be shown in the followingway [4] (see also
[35]). From equation (5) and the definition of themutual informationwewrite

= -s s( ) [ ( ) ( ) ] ( )( ) 


P I X B I X E asup ; ; , 91

XA
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Equation (9c) follows from

å ås= ñá Ä = +s s( ) ∣ ∣ ( ) ( )
⎛
⎝⎜

⎞
⎠⎟H BX H p x x H X p H B

x
x x B P

x
x, x

and similarly for the s( )H EX . Thefirst two summands in equation (9d) can be optimized over A instead of XA

sincewe trace over the classical variableX. The vonNeumann entropy ( )H X P over a classical probability

distribution P is simply the Shannon entropy = -å({ })S p p plogx x x x

df
. In the endwe arrived at [4]

( ) ( ) ( )( ) ( ) Q P 101 1

and thus the lhs turns out to be a useful lower bound in theQKD scenario as claimed. The equality is achieved for
w w= ñá∣ ∣x A x x A, inwhich case =J J( ) ( )H B H Ex x, , for all x and so =( ) Q , 0x .

The usual starting point for an asymptotic analysis of aQKD’s secret key rate r is the following formula [5] 7

= -
s

s s
ÎG

[ ( ∣ ) ( ∣ ) ] ( )r
n

H X E H X Y
1

min , 11n
n n n ndf

AB

where sA B En n n is a pure tripartite state shared by all parties, sXYE is a classical-quantum state obtained by
measuring sA B En n n (so X Y, are classical variables also called a raw key) and n is the block size. Themarginal state
sA Bn n over which is being optimized is essentially a Choi state introduced on p6. The setΓ are all Choi states
compatible with the channel estimation step in the protocol andwewill see it in action in equations (23c).
Finally, the expression in equation (11)

= -( ∣ ) ( ) ( ) ( )  H A B H AB H B 12
df

is the quantum conditional entropy.We can quickly see the equivalence between equation (11) and
= -s s( ) [ ( ∣ ) ( ∣ ) ]( )  P H X E H X Bsup1

XA
from equation (9b).We get rid of the supremumby realizing that in all

mainstreamQKDprotocols, the input states (or private codes) A are pure states (ormixtures thereof) leaving us
with the classical-quantum input state of the form w w= å ñá Ä ñá∣ ∣ ∣ ∣ p x xXA x x x x A. Themaximum is achieved
for A maximallymixed and so from equation (9e)we get =( ) ( )( ) ( ) P Q1 1 , see below(10)8. In the second
step, we realize that in all QKDprotocols, Bob applies a POVMon the received quantum state generating a
classical variableY and so equation (11) for n=1 has been recovered

=( )( ) Q r ,1
1

where sAB from the rhs represents  on the lhs via theChoi–Jamiołkowski isomorphism (see p 6). There is also
amissing sup for r1 (or rn in general) as opposed to ( )( ) Q 1 and this a subtle point. From the quantum capacity
standpoint, the channel  is given and themaximization is over all possible input states A (quantum codes). In
theQKD scenario (specifically in its entanglement version) the parties try to sharemaximally entangled states

7
The actual expression for the key rate can be applied under very general circumstances, see [5], corollary 6.5.2.

8
Note that we are not a priori assuming anything. If a newQKDprotocol is invented, the fact that the one-shot private capacity ismaximized

for amaximallymixed statemust be proved.
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and themost reasonable strategy is obviously to start the distributionwithmaximally entangled states (quantum
codes)9. The fact that theymay become disrupted due to decoherence or an eavesdropper implies that the
channel will be different. Aswewill see later, such a disrupted code is a channel representation (the Choimatrix).

Pauli group for qudits andMUBs
It is instructive to investigate the case of two complementary bases (MUBs) for higher-dimensional Hilbert
spaces. To this end, wefirst informally introduce the qudit Pauli group Pd . It has two generators Î PX Z,d d d

defined as

å= Å ñá
=

-

∣ ∣ ( )X k k a1 , 13d
k

d

0

1

åw= ñá
=

-

∣ ∣ ( )Z k k b, 13d
k

d
k

0

1

where w p= dexp 2 i and⊕ is additionmodulo d. An arbitrary element ofPd is then
a bX Zd d

for a b -  d0 , 1.
Fromother useful properties of the qudit Pauli group let us recall that the special case ofWeyl commutation

relations [16]) reads

= z ( )X Z Z X e . 14d d d d
i d

Hence, the eigenvector vd in the equation = lX Z v ved d d d
i d is also an eigenvector of a aX Zd d (up to a phase). This is

because

=a a a kz( ) ( )X Z X Z e , 15d d d d
i d

where k a a= -( ) 22 counts the total number of passes ofZd throughXd. But vd is also an eigenvector of the
rhs (up to a phase).

Choi–Jamiołkowski representation of quantum channels
A remarkable way of representing a quantum channel is known as theChoi–Jamiołkowski isomorphism
[37, 38]. Let  be the quantum channel. Then there exists a positive semi-definitemap R , sometimes called
Choimatrix, that represents the action of the channel via

= Ä◦ [( ) ] ( )   RTr id . 16A A A B

The channel  is trace-preserving if its Choimatrix satisfies =RTr idB A. Conversely, any quantum channel
 gives rise to a Choimatrix

= Ä F ¢( ) ( ) ◦ ( ) R id , 17AB A AA

where F = å ñ ñ¢ = ¢∣ ∣i iAA i
d

A A1
A is an un-normalizedmaximally entangled state. The physical interpretation of the

Choimatrix is as if the communicating parties shared amaximally entangled qudit pair. Instead of sending the
actual qudit through the channel one sends a half of amaximally entangled state. TheChoimatrix is usually
derived from another channel representation (Krausmaps, for example) but almost all QKD schemes allow its
direct construction. This leads to the so-called diagonal Bell state. To see this, recall that the states inmanyQKD
schemes are always sent in one of theMUBbases. Thatmeans that the number of possible errors can be
enumerated—one just needs tofind the error generators causing a bitflip in at least one of the bases. These are
precisely the elements of the Pauli group Pd and so theChoimatrix reads

å l= Ä F
a b

ab
a b

=

-

¢˜ ( ) ( ) ˜ ( )R X Zid . 18AB

d

d d AA
, 0

1

Starting from (18), the operation ◦ in (17) becomes an ordinarymatrixmultiplication and the tilde indicates a
normalized state. The probability error coefficients satisfy lab 1 0 together with lå =a b ab=

- 1d
, 0

1 .

3.Derivation of the 2- and 3-MUBQKDadversarial channels for qudits and their
asymptotic secret key rates

Weadopt and reformulate themethod of adversarial channel derivation from [5]. A concise version also appears
in appendixAof [6].

9
Amore general idea, that wewill not discuss further, is the possibility already envisaged in [4] to go beyond entanglement distillation

protocols in order to establish classical secret correlations. It indeed turns out that one can distribute so-called ‘private states’ [36] for this
purpose. This is precisely the situationwhere =( )( ) Q 01 but >( )( ) P 01 .
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2MUBs
The error analysis is straightforward. In the bit basis (the eigenvectors ofZd), the errors are caused by aXd (there
is -d 1of them) and a bX Zd d for all a b >, 0 (there is -( )d 1 2 of them in total). Hence themeasured error rate
in the bit basis reads

l l= - + -( ) ( ) ( )Q d d1 1 , 19b Z
2

?

where l lº bZ 0 and l? is the rest. Similarly for the phase basis, by setting l lº aX 0 we obtain

l l= - + -( ) ( ) ( )Q d d1 1 . 20p X
2

?

It is common and experimentally reasonable [6] to set the error rates equal = ºQ Q Qb p . The normalization
condition yields

l l= - + -( ) ( )Q d1 2 1 2100
2

?

and it is perhaps clear that l? is a free parameter that needs to be determined by taking the best Eve’s strategy.
Following [5], themost general quantum attack is a collective attack. A collective attack is Eve’s interactionwith a
passing qubit one by onewith an eventual collectivemeasurement deferred until the quantum transmission is
over. In this light, themaximumamount of information provided to Eve is given by theminimized coherent
information equation (7)whichwe readily rewrite as

F = -¢( ˜ ) ( ) ( ) ( )˜ ˜Q H B H AB, . 22AA R R

Indeed, the normalized Choimatrix R̃ serves a double purpose: it is a channel representation but also an output
of the channel whose input ismaximally entangledwith the reference systemA (see equation (17)). The
minimized rhs can be immediately evaluated

F = -
l l

¢( ˜ ) [ ( ) ( ) ]

( )

˜ ˜Q H B H AB

a

min , min ,

23

AA R R
? ?

å l l= +
l a b

ab ab
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d

, 0

1

?
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= + - + - - + -

+ -
- -

-
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-
+ -

l
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( ) ( ) ( )
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d Q d Q d

d
Q d

d

Q d

d
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log min 1 2 1 log 1 2 1

2 1
1

1
log

1

1
1 log . 23

2
?

2
?

2
?

2
?

2
? ?

?

Equality (23b) follows from =[ ˜ ]R dTr idA AB (the channel represented byRAB (R̃AB) is unital).We also used the
fact that R̃AB is Bell-diagonal in order to calculate ( ) ˜H AB R using equations (19)–(21). From(23c), by setting

l
F =¢[ ( ˜ )]Q

d

d
, 0AA

?

, we find the stationary point

l =
-( )

( )Q

d 1
24?

2

2

and
l
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-

-
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Q
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d
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Q Q

2

2
?

24
1
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4

2 2 reveals aminimum for all d andQ. Then

l l= =
-
-

( ) ( )Q Q

d

1

1
25Z X

and as a result we get

å å

å
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-
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+
-
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1
26

d

d

d d

d

d d

d

d d d d

2MUBs 2

1

1

1

1

2

2
, 1

1

also called the BB84 channel for d=2. The secret key rates obtained by plugging equation (24) into
equation (23c) read

= + + - - - -( ) [ ( ) ( ) ( )] ( )( ) Q d Q Q Q Q Q dlog 2 log 1 log 1 log 1 27d
1 2MUBs

and are plotted infigure 1 for d=2 to 7. For d=2 the rate goes to zero for »Q 0.11which is the famous
threshold derived in [39].
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2MUBs via equation (11)
Wecan recover one of our earlier results also from equation (11). First, since = =( ) ( )H X H B dlog and by
using equation (4) together with the identity - = -( ) ( ∣ ) ( ) ( ∣ )H B H B X H X H X B we get

= = - - - - + -( ∣ ) ( ∣ ) ( ) ( ) ( ) ( )H X B H B X Q Q Q Q Q d1 log 1 log log 1 . 28

The channel  d
2MUBs is unital:  :d d d

2MUBs id idd d . Therefore, Bob’s information is classical (knowing the basis
he perfectlymeasures the raw bit value), ºY B and =( ∣ ) ( ∣ )H X B H X Y .We alsofind

= º
( ) ( ∣ ) ( ∣ )H E

H E X H B X
2

and by using - = -( ) ( ∣ ) ( ) ( ∣ )H E H E X H X H X E we get

= -( ∣ ) ( ∣ ) ( )H X E d H E Xlog . 29

Putting it all together, we obtain

= + - - + - - º[( ) ( ) ( )] ( ) ( )( ) ( ) r d Q Q Q Q Q d Qlog 2 1 log 1 log log 1 30d
d1

,2MUBs 1 2MUBs

in accordancewith equation (27).
The reason for the repetition of the previous analysis is two-fold. Besides showing that our earlier approach

via quantum/private capacity is valid and arguablymore perspicuous, the secret key rates of the formof
equation (11) enable a nice interpretation of the entropic quantities and a direct comparisonwith the results
coming from the finite key size analysis performed in [28], which is based on the one-shot entropic uncertainty
relations. The second point will be discussed in detail in section 4. To illustrate thefirst point, note that for d=2
wemay rewrite equation (11) in an evenmore familiar form [6]

= - -( ) ( )( )r h Q1 leak , 31d
1

,2MUBs
EC

where = - - - -( ) ( ) ( )h Q Q Q Q Q1 log 1 log
df

is the binary Shannon entropy and = ( )h QleakEC is the
information leaked to Eve during the error correction (information reconciliation) procedure.

Going back to a general d, typically, > ( ∣ )H X YleakEC (recall ºY B frombelow equation (28)). This is
because the algorithms performing this purely classical part do not typically achieve the Shannon limit [19]. For
our purposes we consider this step to be perfect: = ( ∣ )H X YleakEC .

3MUBs
The existence of threeMUBs generated by the Pauli elements Z X,d d and X Zd d for any d [16] is good news and it
makes senses to study the secret key rates for the 3-MUBQKDprotocols. The error analysis is a bitmore
intricate. In the bit (Zd) and phase (Xd) basis the errors are generated by the aXd and a bX Zd d and by bZd and a bX Zd d ,
respectively, assuming a b >, 0. In the bit-phase basis (the basis spanned by the eigenvectors of X Zd d) the
errors are caused by a bX Z,d d (a b >, 0) and those not of the form a aX Zd d for a > 0. This is shown in
equation (15).

Let usfirst do some counting: for a given d there is in total -d 12 error operators a bX Zd d by excluding an

identity. It contains -d 1of aXd operators and -d 1of bZd operators. There is also -d 1of a aX Zd d operators

Figure 1.Asymptotic secret key rates for 2-MUBQKDprotocol (in bits per channel) are depicted for d=2 to 7 (from the bottomup).
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for a > 0. Hence, the number of operators of the form a bX Zd d (a b a b> ¹, 0, ) causing errors in the X Zd d

basismust be

- - - = - -( ) ( )( )d d d d1 3 1 2 1 .2

As a result we get from equation (18) the following error rates:

l l l= - + - + - -( ) ( ) ( )( ) ( )Q d d d d a1 1 2 1 , 32b Z X XZ

l l l= - + - + - -( ) ( ) ( )( ) ( )Q d d d d b1 1 2 1 , 32p Z XZ?

l l l= - + - + - -- ( ) ( ) ( )( ) ( )Q d d d d c1 1 2 1 . 32b p X XZ?

The coefficients l l,Z X are defined as before and l l= aaXZ for a< - d0 1.We again set the error rates
equal: = = º-Q Q Q Qb p b p . The normalization condition becomes

l l l l l+ - + - + - + - - =( ) ( ) ( ) ( )( ) ( )d d d d d1 1 1 2 1 1 33Z X XZ00 ?

andwefind

l l= - - -( ) ( )Q d a1 1 , 3400 ?

l l l= = ( )b, 34X Z ?

l
l

=
- -
- -

( )
( )( )

( )Q d

d d
c

2 1

2 1
34XZ

?

for >d 2. The channel is of the following form

å å å

å

l l

l

= - - - + + +

+
- -
- -

a

a a

b

b b

g

g g g g

a b

a b a b

=

-

=

-

=

-

¹ =

-

( ) ( ( ) ) ( )

( )
( )( )

( ) ( )

† † †

†

     



⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Q d X X Z Z X Z X Z

Q d

d d
X Z X Z

1 1

2 1

2 1
. 35

d

d

d d

d

d d

d

d d d d

d

d d d d

3MUBs
? ?

1

1

1

1

1

1

?

1

1

Theminimization procedure similar to equation (23) leads to an analytical solution (too long to paste here) of
the following cubic equation

l l
l

= - - -
- - +

- -
( ( ) ) ( )

( )( )
( )

⎡
⎣⎢

⎤
⎦⎥d Q

d Q

d d
1 1

2 1

2 1
. 36?

3
?

?
2

The resulting secret key rates are given by

l
l

l l l l

= + - -
- -
- -

+ - + - - - - - -

( ) ( ( ) ) ( )
( )( )

( ) ( ( ) ) ( ( ) ) ( )

( ) Q d Q d
Q d

d d

d Q d Q d

log 2 1 log
2 1

2 1

3 1 log 1 1 log 1 1 37

d
1 3MUBs

?
?

? ? ? ?

and are plotted infigure 2. By comparingwithfigure 1we can see that the tolerable threshold values aremuch
better than for the corresponding 2-MUBprotocol. Our results perfectly agree (in the overlapping cases)with a
numerical study from [26] as well as the secret key rates and thresholds from [24]. The d=2 casemust be
analyzed separately and it is thewell-known six-state protocol [13]. The channel is the qubit depolarizing
channel (see again [6], appendix A)

= - + + +( ) ( ) ( ) ( )     Q Q X X Y Y Z Z1 3 2 2 . 382
3MUBs

2 2 2 2 2 2

Then

= -( ) ({ }) ( )( ) Q S q1 , 39i
1

2
3MUBs

where = -{ }q Q Q Q Q1 3 2 , 2, 2, 2i . The one-shot capacity becomes zero for the threshold value
»Q 0.126 [6, 40].

4.Non-asymptotic secret key rates for the 2- and 3-MUBQKD d-level protocols

The condition for a secret key generatedwhen the resources are not unlimited is formally identical to
equation (1). However, equation (1) cannot this time be satisfied arbitrarily well.More precisely, forfinite-
length private codes,  is chosen sufficiently small and it becomes an input parameter of the secret key
generation protocol. The task can be further reformulated—it is often advantageous to investigate separately
two conditions : (i) correctness

¹[ ] ( )K KPr , 40A B cor
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where the key string is allowed to be different with a non-zero probability cor, and (ii) secrecy

å t- ñá Ä
Î∣ ∣

∣ ∣ ( ) 
K

k k
1

. 41AE
k K

A E

1

sec

Thismeans that an adversary is decoupled from the resulting secret key sequence by a small (butfixed) amount
sec . Due to composability [41], the errors add up and the overall security parameter is bounded:

+ +    cor sec PA
10. Similarly to the asymptotic analysis, the ‘measure’ of decoupling, sec , is related,

through the decoupling lemma [5]

e + - + -e- ℓ( ( ∣ ) ) ( )  H X E n2 2 leak , 42n n
sec min EC

1
2

to the smoothmin-entropy

=e

e
¢

- ¢

¢( ∣ ) ( ∣ ) ( )

 





H A B H A Bmax , 43min
df

s.t.
min

1 

where

s= - Ä
s

s x

x

< Î

-( ∣ ) [ ] ( ) 
 

H A B max sup 2 id 0 . 44AB A Bmin
df

s.t.
0 Tr 1

B

B

Wewill also need themax-entropy definition

s= Ä
s

( ∣ ) [ [( ( ) ) ]] ( ) H A B sup log Tr id , 45AB A B ABmax
df 1 2 2

B

where for two commuting distributions  P and s  Q the optimization can be performed [42].

Given the secrecy parameter sec , the secret key of the length = eℓ ( )nr ndf , can be extractedwhenever

-e e ( ∣ ) ( )( )
r

n
H X E

1
leak . 46n n n,

min EC

The secret key rate is achievable [27]. Given the security parameters e in (42), the constructed code satisfies the
decoupling condition. In coding theory, the statement of achievability is usually proved by a random
construction via a direct coding theorem. This is precisely the construction found in section 5.4of [5]. The
original derivation from [5] has been further elaborated on and sharpened providing increasingly better
estimates for the secret key rate. For themost important contributions, we should not forget tomention [19–
21, 23] andmainly [28] culminating in [29]whose extension to theQKDqudit protocols will be presented in the
next section. Also note the similarity between equation (11) and equation (46). Indeed, this is not a coincidence,
the latter can be seen as afinite-key version of the former [5, 19]. The conditional entropy belongs to a parametric

Figure 2.Qudit secret key rates for the 3-MUBQKDprotocol for d=2 (the bottom curve) to 7 (the upmost curve) in bits per channel
are plotted. For the special case d=2 equation (32) simplify and no optimization is needed. The resulting channel is equation (38).

10
We took the liberty of ignoring the possibility of failure PA during the privacy amplification (PA) step and the probability of failure cor of

correctly estimating Alice’s key, equation (40). Both parameters are undoubtedly important for the overall secret key rate in the non-
asymptotic scenario. Theymanifest themselves as additional exponents in equation (42) in the formproportional to- [ ]log 1 . The errors
are chosen independently as part of the protocol [19, 28] but ourmain interest lies in sec and sowewill study the key rate as its function. For
a practical piece of advice as what to do in the deployed scenario, where all parametersmust be set, we point the reader to[22] and also [29].
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family of the so-called Rényi entropies and both themin- andmax-entropy, equations (44) and (45), are family
members with an operationalmeaning relevant forQKD [23]. Furthermore, we have the equipartition property

= =
e

e

e

e

 ¥  ¥
( ∣ ) ( ∣ ) ( ∣ ) ( )  

n
H X E

n
H X E H X Elim lim

1
lim lim

1
. 47

n

n n

n

n n

0
max

0
min

An important advance in the security of thefinite-key sizeQKDusing twoMUBswas possible due to the use
of the uncertainty relation for smooth entropies:

+e e( ∣ ) ( ∣ ) ( )  H X E H X Y n dlog 48n n n n
min max

[42] explains the physical interpretation in detail sowewill only say that uncertainty relations in general limit the
knowledge in one basis if ameasurement is performed in the complementary basis. In this case, the
complementary basis (the eigenvectors of the PauliZd basis) is used exclusively for the sacrificed portion of the
sifted key and this consequently serves for an estimation of the preserved part of the sifted key (which itself is
transmitted in the basis spanned by the eigenvectors of the PauliXdmatrix).

Bounds on thefinite secret key rate
The direct evaluation of the smoothmin-entropy for < ¥n0  in equation (46) is not straightforward. There
exists a couple ofmethods to estimate it and themost advanced analysis so far, based on the smooth entropy
uncertainty relations, appeared in [29] following [28].We present its generalization to the qudit scenario for the
2-MUBQKDprotocol. This approach provides the best secret key rate known to the authors but it cannot be
extended to the case of 3MUBs in a straightforwardmanner. In this case we use another strategy via the study of
the asymptotic behavior of the smoothmin-entropy. This bound already appeared in [23] andwe improve it by
recent insights based on the conditional entropy variance (the so-called second-order approximation of the
quantum coding rate [43]). For the sake of comparison, we evaluate these bounds also for the 2-MUBqudit
protocol. Here, the finite-key corrections come from two sources. First, it is the approximations of the smooth
min-entropy and the smooth quantities in general. The second source of corrections is the error rate estimation
phase, where a part of the sifted key is sacrificed in order to estimate the error rate of the data used to extract the
actual secret key.

To proceed, wewill recapitulate the relevant parts (see footnote 6) of the qudit 2- and 3-MUBQKDprotocol
in order to apply themethods of [28]. For the case of 2MUBs, wemay adopt the same protocol definition as in
Box1 of[28]. In particular, an asymmetric choice of the complementary bases is used [30], one for the raw key
whose lengthwill be labeled n and the other one of the length k used solely in the parameter estimation step.
Hence, the total length of the sifted key is = +N n k. The difference compared to [28] is the calculation of the
average error l subsequently used for the parameter estimation. As a pure formality—instead of themodulo two
addition of the publicly announced bit sequences of the lengthk (used to count the number of differing bits), the
communicating partiesmay use

å ål = ¹ =
= =

{ ∣ } ( )
⎡

⎢⎢
⎤
⎥⎥x y X

x y

d
1 , 49

i

k

i i
i

k
i idf

1 1

where stands for themodulo d subtraction and w{ ∣ }A1 denotes the set indicator function defined for two sets
W Ì A as w ={ ∣ }A1 1whenever w Î W and zero otherwise. In the parameter estimation phase, the sacrificed
portion of the sifted sequence of the length k over d letters (transmitted in the PauliZd basis) is used to estimate
the error rate in the portion of the length n transmitted in the PauliXd basis. Analogously to [28], we are

penalized by effectively increasing the error rate by n =
+

-
e

( )

( )

N k

k N k

1 ln 2

2 due to thefiniteness of the statistics.More

precisely, the estimate of large deviations for an independent and identically distributed randomprocess
sampledwithout replacement due to Serfling is used [44].

For threeMUBs, theQKDprotocolmust bemodified only such that the PauliXd basis will be used for the
key extraction and theZd and X Zd d basis for the parameter estimation step. So the communicating parties will
be instructed to switch the bases accordingly with equal probabilities for theZd and X Zd d bases. In this case, the
uncertainty relations based approach does not provide the best secret key rates and the smoothmin-entropy
from equation (42)must be estimated differently (see equation (56) onwards).

A useful upper bound on the classicalmax-entropy is given by the probability distribution support (the set
over which the probability distribution is positive [5]) leading to

= = Î ¼ - = = >( ∣ ) ∣ [ ( ∣ )]∣ ∣{ { } [ ∣ ] }∣ ( )H X Y P X Y y x d X x Y ylog supp log 0, 1, , 1 ; Pr 0 . 50Pmax

Herewe generalize the result from [29] (claim 9) and show that the rhs satisfies

n nÎ ¼ - = = > + + + -∣{ { } [ ∣ ] }∣ ( ( ) ( ) ( )) ( )x d X x Y y n h Q Q dlog 0, 1, , 1 ; Pr 0 log 1 51

10

New J. Phys. 18 (2016) 073030 KBrádler et al



for the 2-MUBprotocol.We start as in [28]

å l nÎ ¼ - = = > < +
Î ¼ -

∣{ { } [ ∣ ] }∣ { ( )} ( )
{ }

x d X x Y y n Q a0, 1, , 1 ; Pr 0 1 , 52
x d0, , 1 n

å l
l n= - < +

l

l

=

( ) { ( )} ( )⎜ ⎟⎛
⎝

⎞
⎠

n
d n Q b1 1 , 52

n

0

å l
= -

l

n
l

=

+

( ) ( )
( )

⎜ ⎟⎛
⎝

⎞
⎠

n
d c1 , 52

n Q

0

-n n+ +( ) ( )( ( )) ( ) d d2 1 . 52n h Q n Q

The new term - l( )d 1 in the first equality comes froman additional number of errors caused by a larger

(d-letter) alphabet. The last line comes from
l

ål
n n

=
+ +( ) ( ( ))⎜ ⎟⎛

⎝
⎞
⎠

n
2n Q n h Q

0 , valid for n+ Q0 1 2, and by

taking into account l n+( )  n Q0 . Upon taking the logarithmwe obtain(51). This, on the other hand,
allows us to bound themin-entropy from equation (42) viaequation (48):

n n- + - + -e ( ∣ ) ( ( ) ( ) ( )) ( ) H X E n d h Q Q dlog log 1 . 53n n
min

Figure 3. Secret key rates based on thefinite-key length analysis for =d 2 ... 7 2-MUBQKDprotocol. For each d, a triple of curves
(blue/red/green) corresponds to increasingly better key rates. Theworst rate (blue) is provided by optimizing the lower expression in
equation (63). Themiddle (red) curve comes from the second-order analysis in the upper expressionequation (63). The highest
(green) rate is given by optimizing equation (55) based on uncertainty relation for smooth entropies we obtained for anyd.We set
Q= 0.05, e = -10 10 and = +N n k is the length of the sifted string of d letters.

Figure 4.Rescaled secret key rates fromfigure 3 for d=3 and d=7 (using the same color coding) to assess the behavior for a low
number of signals and show the superior rates provided by the uncertainty-relations-based approach (the green curves).
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Hence, we get for(46)

n n- + - + - -e ( ) ( ) ( ) ( )( ) r d h Q Q dlog log 1 leak 54n,
EC

and sofinally the optimized secret key rate is given by

n n
-

- + - + - -e [ ( ) ( ) ( ) ] ( )( )^ r
N k

N
d h Q Q dmax log log 1 leak . 55n

k

,
EC

The numerical optimizationwas done by choosing a target number of sifted signalsN, the error rateQ and the
security parameter  . The result of optimization is the highest rate and also the number k of sacrificed bits
needed to achieve it. Another option, we did not pursue, was to set the target number n of raw bits and optimize
the rate over k sawell. The choice dependsmore on practical requirements. As expected, in the limit of  ¥N
or  ¥n , we recover equations (27) and (30). This is because n  0 and = -

+
1N k

N

n

n k
.

The smoothmin-entropy estimates reveal the rate of convergence in equation (47). Thefirst such estimate
widely used in the literature was provided by Renner [5] (corollary 3.3.7)

e
- +e ( ∣ ) ( ∣ ) ( ) ( ) 

n
H X E H X E

n

1
2 log rank 3

1
log

2
. 56n n

Xmin

Abetter estimate comes from the recent advances in finite block length quantum coding [43] through

e+ Fe -( ∣ ) ( ∣ ) ( ) ( ∣ ) ( ) 
n

H X E H X E
V X E

n

1
, 57n n

min
1 2

where

s s s= - -( ) [ ( ( )) ] ( )   V DTr log log 58
df 2 

is the relative entropy variance and

s s= -( ) [ ( )] ( )  D Tr log log 59
df

is the quantum relative entropy [45]. Then, as a special case, we obtain the quantum conditional entropy and the
conditional entropy variance [34]

= - Ä( ∣ ) ( ) ( ) H A B D id , 60AB A B

= Ä( ∣ ) ( ) ( ) V A B V id . 61AB A B

The expression F = - -- ( ) [( ( ))]x x2 inv 1 Erf 21 stands for the inverse of the complementary cumulative
Gaussian distribution function. The previouslymentioned large deviation estimate of the smoothmin-entropy
manifests itself by replacing =( ) ( ∣ )f Q H X E with

n+ = ~( ) ( ∣ ) ( ) ( ) f Q H X E f Q 62

in equations (56) and (57).

Figure 5. Secret key rates based on thefinite-key length analysis for 3-MUBQKDprotocol for =d 2 ... 7. The upper curve of each pair
(red/blue) is given by optimizing the lower expression in equation (63). Hence the second-order analysis provides better achievable
rates compared to Renner’s original estimate [5] (lower curves from the upper expression in equation (63)).We setQ= 0.05,
e = -10 10 and = +N n k is the length of the sifted string of d letters.

12

New J. Phys. 18 (2016) 073030 KBrádler et al



Combining equation (46) and the estimates in equations (56) and(57) togetherwith equation (62)we get an
achievable upper bound for the secret key rate

e

-
- -

+

- F

~e e-

-
-

( ∣ )
( )

( )
( )( )

( ∣ )
^




⎡

⎣

⎢⎢⎢

⎧
⎨⎪

⎩⎪

⎤

⎦

⎥⎥⎥
r

N k

N
H X Emax leak

2 log rank 3 log

.
. 63n

k

X N k

V X E

N k

,
EC

1 2

1 2

The optimized secret key rate e( )r̂ n, is plotted as the two lower curves infigure 3 for the 2-MUB protocol and in
figure 5 for the 3-MUBprotocol. Then, the overall number of secret key bits is given by -( )N k dlog for k found
in equation (63). Figure 4 shows the d= 3 and d= 7 cases from figure 3 on a semilogarithmic scale.

Figure 6.Normalized intensity (left columns) and the corresponding phase plots (right columns) of the threemutually unbiased bases
for transverse spatial lightmodes of dimension7. Color codings for intensity and phase are shown below in arbitrary units from 0 to 1
and 0 to p2 , respectively. (a)Eigenstates of the generatorZ7 , which are also known vortexmodes orOAMeigenstates (intensity null at
the center of the beamdue to the phase singularity is too small to be seen). (b)Eigenstates of theX7 operator can be described by so-
called anglemodes due to their intensity profil. (c)Theoretical plot of intensity and phase of the eigenstates of the thirdmutually
unbiased basis, which is constructed by X Z7 7.
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5.Discussion and conclusions

With the promising results of an increased secret key rate at hand, we now turn to laboratory implementations of
discrete high-dimensional state spaces. Although the presented theoretical analysis is valid for any experimental
realization, we focus on one prominent example, namely transverse spatial lightmodes. Encoding high-
dimensional quantum states on the orbital angularmomentum (OAM) of photons is a vibrantfield inwhich
technologies to generate andmanipulate the states havematured over the last 15 years.Here, the eigenstates of
twoMUBs can be intuitively understood as the complementary variables, OAMand angular position (ANG).
They correspond to the generatorsZd andXd, respectively, whichwe introduced earlier (equation (13)). High-
dimensional states of bothMUBs have been used in previous experiments to demonstrate complementarity as
well as high-dimensionality of the generated quantum states [46–48].More importantly, their advantage in
high-dimensional QKDhas been demonstrated recently [10] and experimental techniques for efficiently sorting
the encoded qudits arewell established [49, 50].

Infigure 6, we give an example of the eigenmodes of all threeMUBs for dimension d=7: theOAM-basisZ7,
the ANG-basisX7 and the eigenstates of X Z7 7. The typical vortex ofOAMcarrying lightmodes and their
according helical phase dependence (fromwhich theOAMstems) can be seen (figure 6(a)) aswell as the angular-
shaped intensity of the states in the secondMUBs (figure 6(b)). Themodes of the thirdMUBaremore complex
in their intensity and phase profile (figure 6(c)), which leads to open questions of howpractical suchmodes are
in a laboratory setting. Althoughmodern techniques to generate complex lightfields with highfidelity and
efficiency arewell known [51], the efficient sorting of a general set of spatialmodes remains difficult. Possible
techniqueswill need to be efficient and towork on the single photon level. Both requirements are fulfilled for
established sorting devices that are used forOAMandANGmodes but no direct techniques is known yet, which
sorts themodes of the third basis. Oneway to circumvent this lack of an efficient direct sortingwould be to
transfer the transverse spatial degree of freedom into different optical paths, e.g. as described [52]. Once
transferred, it is knownhow to realize any unitary transformation on the state, and thus an efficient detection
could be done in any basis [53]. Here, the fast progress in integrated quantumopticsmight a promisingway to
realize such a so-calledmultiport even for dimensions as high as d=7 [54, 55].

In summary, we calculated secret key rates and tightly estimated achievable upper bounds on acceptable
errors for an asymptotic andfinite key length scenario in high-dimensional QKD schemes.Wewere able not
only to reproduce and streamline already knownbounds butmainlywe (i) adapted the uncertainty-relations-
basedmethod to high-dimensional QKDwith twoMUBs leaving uswith non-zero secret key rates even for a
relatively small number of signals and (ii) extended thefindings to aQKD scheme involving 3MUBs basis. Given
the assured existence of 3MUBs in any dimension, our results are not limited to dimensionswhere the exact
number ofMUBs is known and they can be readily applied to laboratory implementations. Additionally, we give
an example for a possible physical implementation, transverse spatialmodes, for whichmature techniques in
generating all possible qudit-states exist and devices to efficiently sort the states of twoMUBs are established.
Hence, an important future challenge is to develop a practical device that efficiently sorts themodes of the third
MUB.Given the derived increase in the secret key rate, the development of such a novel sorter will further boost
high-dimensional QKD schemes and their real-world implementations.
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